Shock waves, dead zones and particle-free regions in rapid granular free-surface flows
نویسنده
چکیده
Shock waves, dead zones and particle-free regions form when a thin surface avalanche of granular material flows around an obstacle or over a change in the bed topography. Understanding and modelling these flows is of considerable practical interest for industrial processes, as well as for the design of defences to protect buildings, structures and people from snow avalanches, debris flows and rockfalls. These flow phenomena also yield useful constitutive information that can be used to improve existing avalanche models. In this paper a simple hydraulic theory, first suggested in the Russian literature, is generalized to model quasi-two-dimensional flows around obstacles. Exact and numerical solutions are then compared with laboratory experiments. These indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua. Such features are generated by the flow around a pyramidal obstacle, which is typical of some of the defensive structures in use today.
منابع مشابه
Incompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملGranular jets and hydraulic jumps on an inclined plane
C. G. Johnson, J. M. N. T. Gray (2010), J. Fluid Mech., (Submitted) • “Weak, strong and detached oblique shocks in gravity driven granular free-surface ows”, J. M. N. T. Gray, X. Cui (2007), J. Fluid Mech., 579, 113–136 • “Deecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland”, X. Cui, J. M. N. T. Gray, T. Johannesson (2007), J. Geophys. Res., 112, F04012 •...
متن کاملTime-dependent solutions for particle-size segregation in shallow granular avalanches
Rapid shallow granular free-surface flows develop in a wide range of industrial and geophysical flows, ranging from rotating kilns and blenders to rock-falls, snow slab-avalanches and debris-flows. Within these flows, grains of different sizes often separate out into inversely graded layers, with the large particles on top of the fines, by a process called kinetic sieving. In this paper, a rece...
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملStable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches
Dense, dry granular avalanches are very efficient at sorting the larger particles towards the free surface of the flow, and finer grains towards the base, through the combined processes of kinetic sieving and squeeze expulsion. This generates an inversely graded particle-size distribution, which is fundamental to a variety of pattern formation mechanisms, as well as subtle size-mobility feedbac...
متن کامل